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Lift, absolute coefficient C’;=é§

AERONAUTIC SYMBOLS
1. FUNDAMENTAL AND DERIVED UNITS

Metric English
Symbol R
: Abbrevia- : Abbrovia-
Unit tion Unit tion
Tength. .. _. i 1 11=1 7. SO, m foot (or mile) __._-__.. ft (or mi)
T T t second . . oo 8 second (or hour) _._____ sec (or hr)
Foroe.eomew-- F weight of 1 kilogram..... kg weight of 1 pound.___. b
Power....... P borsepower (metrie) ... oo oo hoTsepOwWer Lo enees hp
Spesd v {kﬂometers per hour___... kph | miles per hour-_..._..| mph
''''' meters per second. . .- mps . feet per second......._| fps
2. GENERAL SYMBOLS
Weight=mg . . _ v Kinematic viscosity
Standard acceleration of gravity=9.80665 m/s* »p Density (mass per unit volume)

or 32.1740 ft/sec?
Mass=—

Moment of inertia=mk?. (Indicate axis of
radius of gyration % by proper subscript.)

‘Coefficient of viscosity

2

Aspect ratio, %-

True air speed

Dynamic pressure, %pV’

L

Drag, absolute cocflicient ng&%

Profile drag, absolute cocfficicnt 0,,0:(?8‘1
Induced drag, absolute coefficicnt C’Di:q]iﬁ

.
Parasite drag, absolute coeficient Cpp= ;;éi

Cross-wind force, absolute coeflicient Ces- S

Standard density of dry air, 0.12497 kg-m™-s’ at 15°C

* and 760 mm; or 0.002378 Ib-ft~* sec?

Specific weight of “standard” air, 1.2255 kg/m® or
0.07651 lbjcu ft a : _

I . 3. AERODYNAMIC SYMBOLS
Ares T Angle of setting of wings (relative to thrust line)
Arca of wing 2 Angic of swbilizer seudng Gelative Lo thrust
Gap line) ' :
Span Q Resultant moment

~ Chord Q Resultant angular velocity

Reynolds number, p-}} where [ is a linear dimen-
sion (e.g., for an airfoil of 1.0 ft chord, 100 mph,
standard pressure at 15° C, the corresponding
Reynolds number is 935,400; or for an airfoil
of 1.0 m chord, 100 mps, the corresponding
Reynolds number is 6,865,000).

o Angle of attack

€ Angle of downwash

Lot Angle of attack, infinite aspect ratio

oy Angle of attack, induced

Qa Angle of attack, absolute (measured from zero-
Lift position)

¥ Flight-path angle
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NACA REPORT 958
LAMINAR MIXING OF A COMPRESSIBLE FLUID
By Dean R, Chapman
Page 2, equation (6), the exponent 32 should read 3/2.

Page 2, line preceding equation (7), "than" should read "then."
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LAMINAR MIXING OF A COMPRESSIBLE FLUID

By Dean R. Caapman

SUMMARY

A theoretical investigation of the velocity profles for laninar
miring of a high-velocity stream with a region of fluid at resi
has been made assuming that the Prandtl wumber s unity.
A method which involves only quadratures is presented for
calculating the velocity profile in the mixing layer for an arbitrary
value of the free-stream Mach number.

Detailed velocity profiles hare been ealeulated for free-stream
Mack numbers of 0, 1, 2, 8, and 5. For each Maclk number,
velocity profiles are presented for both a lLinear and a 0.76-
power rariation of wviscosity with absolute temperaturc.  The
calewdations for a linear rariation arc much simplor than those
1t s stoicn toat Ot Sefectong Ui
constant of proportianality in the linear approrimation such
that it gires the correet valuc for the riscosity in the high-
temperature part of the miring layer, the resulting veloeity
profiles are in excellent agreement with those calculated by a
0.76-power variation.

INTRODUCTION

The velocity profile for turbulent mixing at constant
pressure of an incompressible stream with a dead-air region
has beep calculated by several investigators, principally
Tollmien (reference 1). These calculations agree well with
the available experimental data, although the conventional
assumptions regarding the mixing length of a turbulent
flow have since been shown by experiments to be incorrect
(reference 2). The many difliculties encountered in making
precise turbulent-mixing calculations are, of course, a
consequence of the extremely complicated mechanism
govering all turbulent flows. In contradistinction t» the
case of turbulent mixing, the mechanism involved in laminar
mixing is relatively simple, and the mathematical relation
between stresses and velocity gradients for laminar flow
1s well knowp.  The veloeity profiles for laminar mixing,
however, apparently have not as vet been caleulated even
for the case of incompressible flow. It is the purpose of the
present paper to calculate the velocity profiles for laminar
mixing (starting with zero boundary-layer thickness) of
an air stream of arbitrary temperature with a dead-air
region also of arbitrary temperature.  In eases where a
laminar boundary layver of appreciable thickness exists at
the point where mixing begins, the results given herein are
not directly applicable in the mitial part of the mixmg
region. For such cases, it is necessary to make some
supplementary approximation in order to apply the results.

Since the practical applications of laminar-mixing phe-
nomenon usually involve the flow of a gas. the present

KTROIN—50

annlveic inelindes the offeets of compressibility.  Examples
of typical flows wherein laminar nuXmg oceurs can be lound
in the flow of small-scale jet pumps, in the flow behind the
intersection of shock waves of unequal strength, and in
the flow immediately behind the base of a body which has

a laminar boundary layer.!

SYMBOLS AND NOTATIONS

C constant of proportionality between viscosity and
temperature

cp specific heat at constant pressure

k coeflicient of heat conduction

! haraeneriste Toneh

A Mach number

P static pressure

Pr  Prandtl number (ﬂ;;ﬁ)

N Sutherlands constant, approximately 216° F for air

T absolute temperature

U. free-stream velocity

u, v velocity components in z, y directions, respectively

r,y Cartesian coordinates

) thickness of mixing layer, taken between points where
the velocity is 0.01 and 0.99 of the free-stream
velocity

w exponent of viscosity variation with temperature

P mass density

" coefficient of viscosity

v kinematic coefficient of viscosity

v stream function

S dimensionless independent variable

SUBSCRIPTS AND SUPERSCRIPTS

* dimensionless variables as defined in equation (14)

© free-stream conditions

0 stagnation conditions of the free stream

d conditions in the dead-alr region

BASIC EQUATIONS AND ASSUMPTIONS

BASIC EQUATIONS

A schematic illustration of the flow under consideration is
shown in figure 1. In order to make the laminar-mixing
process amenable to calculation, the usual assumptions are
made that the laver affected by viscosity is thin and has zero

! The present analysis was undertaken as part of an investigation of this lutter problem,
and originally appeared as Appendix B of a thesis **Base Pressure ot Supersonic Velocities,”

submitted to the California Institute of Technology, June 1648, The results of some supple-
mentary computations not given in the thesis have been added for sake of completeness in

the present report.

1
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pressure gradient. Under these conditions the formal pro-
cedure for estimating the order of magnitude of the various
terms in the complete Navier-Stokes equations for viscous
compressible flow can be carried through in precisely the
same manner as is done in the classical (I’randtl) treatment of
laminar boundary-layer flows. In so doing, the dynamic
equation for the r direction reduces to the familiar boundary-
layer momentum equation

ou_ 0
b:r+p 07/ o\ bu> 1

while the dynamic equation for the y direction reduces to
zero on both sides. In passing from the Navier-Stokes equa
tion to (1) it is to be noted that the usual boundary-layer
assumption 8/z<{<1 is violated in th eimmediate vicinity
of point 0 (fig. 1) just as in the case of boundary-layer flow
over a plate.

By employing the same considerations on order of magni-
tudes as were used for the complete Navier-Stokes equations.
the complete differential equation representing the balance
of energy 1n viscous compressible flow reduces to

SRY . o
“oyF oy )T oy) =)

which is, of course, the usual energy equation for laminar
boundary-layer flow. In addition to equations (1) and (2),
the equation expressing conservation of mass is needed:

b(mz) O(pv)

SO..T S 7
PU o TP oy

+= 3)
For a given gas the variation of x and ¢, with temperature is
known; hence, the foregoing system of three partial differen-
tial equations is completed by the addition of the equation of
state for a region of constant pressure

T _pa
7.7 5% @
ASSUMPTIONS

In order to solve the above system of equations, the follow-
ing assumptions are made:

1. e¢,=constant

2. Pr=cufk=1

3. _“_:(' (T) » where (' is a constant depending on T

and T,

The second of these assumptions if often made in calculating
boundary-layer flows when only the velocity profile is desired
and not the thermal characteristics.  The difference between
the boundarv-laver velocity distributions for Pr=1 and
Pr=0.73 is small. as is clearly shown by the numerical results
of Emmons and Brainerd (reference 3). Since the mixing-
layer and boundary-layer flows differ only in the boundary
conditions and not in the differential equations, the effect of
assumption 2 may be expected to be similar in the two types
of viscous flow. At moderate supersonic Mach numbers, the
use of Pr=1 for air does not introduce more than 1- or

ADVISORY
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2-percent error in the boundary-layver velocity profile; and
hence, for all practical purposes, the mixing-layer velocity
distribution calculations for Pr=1 should bhe sufficiently
accurate for air,

Assumption 3 needs some explanation since the introduc-
tion of a constant (! differing from unity in the approximate
relation between viscosity and temperature apparently has
not been used in previous work. Usually C'is taken as unity,
and in such cases the approximation u/pe=(T/Ts)® gives
reliable results for a fixed w, provided the free-stream tem-
perature is restricted to a certain range. By introducing the
lactor ¢, the approximatinyg cquation calr be Lo give
the same value as a more exact equation at any desired

e

Us u

™
<

e
NN e |

NN \\\\\\\\\\\\\\

FiGURE 1,—Schematic drawing of the flow.

temperature in the mixing layer regardless of 7o or w.
Assuming that Sutherland’s equation

a=(r.)" s -

represents the true variation of viscosity with temperature,
then the approximate equation can be made exact at any
given temperature T’ by means of the relation

(r.y~(r.) 7% ®

In particular. if the approximating equation is linear in
temperature (w=1, thereby greatly simplifying the boundary-
layver cquations) and the viscosity is matched at the tem-
perature 7y, than the above equation gives

T, T-+S

C=NT1.7, 75

™
as the value of the constant (. By selecting €' in this man-
ner, rather than taking it as unity, a linear variation of
viscosity with temperature then becomes an accurate ap-
proximation in the inner part of the viscous laver, rather
than in the outer part where the viscous stresses are less
umportant.
SOLUTION TO BASIC EQUATIONS

As was first pointed out by Prandtl in reference 4, and
later used to advantage by Busemann and Croeco (refer-
ences 5 and 6, respectively), the consequence of the assump-
tion Pr=1 when applied to boundary-layer flow is that the
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temperature becomes a funetion only of the veloeity. Hence

aT'=fu (8)

Jvosubstituting this relation into equation (27 and using
equation (1) in conjunction with the assumption Pr= 1, 1t
follows that the energy equation is automatically satisfied
if the funetion f(u) satisfies the ordinary differential equation

if

du?

+1=0 (9)

Phiegiatitin Phlds cqaailon. oo R I O R RS U ST I D

T=T, for u=10,
T=1T, for u=10

gives

fon=e,T= (‘,.'I'l_.—,_l;-%— [I{ I:(',.('/'«, —Tn+ [)“:I (1
2 « 2
as the relationship between veloeity and  tempermdture,
Sinee the temperature determines the density, equation (11)
also provides a means for caleulating the density as a fune-
tion of the veloeity.

Following the method first given for incompressible flow
by von Mises (reference 7) and later used for compressible
flow by von Karman and Tsien (reference 8y, a transforma-
tion is made to a new sct of independent variables (o, ),
where ¢ is the stream function. By using ¢ us one of the
independent variables, the continuity equation (3) is iden-
tically satisfied, and the velocity components are given by

_P= OY

P a¢
0 oy (12)

h p Or -
Sinee the requirements of conservation of energy are ful-
filled by equution (111, and conservation of mass< by equa-
tion (12), the only equation now remaining (o be satisfied
is the momentum equation (L. If a transformation were
made to a completely new set of independent variables
(s, ¢). the transformation formula would be

0o O\// e} + o 0 ox O
Og Ty oY Oz/ Oa p= Oy Q¥ Ov
ooy O +O.\' o e O . O~ O
or—or oy T orosT p. oy T or o

Setting s=r,

Oy
oy

Ox
=0 and o= 1

<o that the transformation formulas are ?

O pu O

oy pa OY

o) ooyt (o
_ (o) ot o+ (o),

2 The varinbles held constant in a ditferentiation process are explicitly indicated in those
cuses where ambigmty could result if the subseript notation were not used,

NTROIS—D0— 2
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It follows that

o ( ;;‘ ) o ( g; ) =pu ( 23‘)«

and
(OII p// Su
01/ (
Henee the momentem equation (1) in the o) system
becomes
ou_ 0 p Ou o
P o, Dt/f( o Ox//) (3

This can be put in dimensionless form by introducmyg the
variables

g
J*"—'j pre=H =T
. hoo
. P .
o = * \,,@U;L?) (14)

Except for the parameter ¢ appearing in the definition of ¢ *
and «*, these variables are the same as those used by Karman
and Tsien (reference 8). Remembering that 7o* the
free-streann total-temperature ratio, is given by

]

0 Y
Tn 'Tw—l'*'

then the relation (equation (11)) between temperature and

velocity can be written as
” _1 0t v -
Tre T Mowsr (T =Te*u*  (15)

The momentum equation (13) becomes, using p*1™* =1,

ou*_ 0 g .
OI*»O#/*( T b¢ (16)
This is the basic equation which must be solved. The

boundary conditions of the problem are such that no bound-
arv laver exists at the point where mixing first begins.
Under these conditions the velocity profiles will be similar
at all points downstream of the origin, and hence the velocity
u* will be a function only of some dimensionless variable
This dimensionless variable must involve both ¢* and «*,
and must be zero at the origin of coordinates since the mixing-
laver thickness is also zero at the origin.  Therefore, let

S‘_:‘/”mx*h

where @ and b are pure numbers which must be determined
by the condition that both sides of equation (16) for u* are
functions only of the single variable §. Setting

g =u*T*"" (17)
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then the right side of equation (16) can be written as

0 [gdu* df\_ 0 du* L. _
O\P’:( dy Oxl/*)w oy’? "q dy a* xr*b/)A

o] du*
™ S (9 zluf 0¢*”">

from which it is obvious that in order for the right side of
equation (16) to be a function only of {, it is necessary that
a=1. With u*=u*(¢) and a=1, the partial differential
equation (16) reduces to the ordinary differential equation

o, u*d du*
A

Consequently, in order for the entire equation to be a fune-

. . 1
tion only of ¢, it is also necessary that b= — §rh(‘,nce

v 14

== . . (18
\’J‘* v (]meTC s)

g‘:
and the ordinary differential equation for the velocity dis-
tribution now reduces to

du*  d / du*
-3 & (0% (19

Equation (19) is the same differential equation that was
obtained for boundary-layer flow in reference 8. It is a non-
linear differential equation since g depends upon the velocity
u*. This equation, however, can easily be converted into
an integral equation which can be solved by the method of
successive approximations. The conversion is made by
temporarily assuming that g is a known function of ¢ (instead
of u*) and formally applving the standard methods for
solving first order linear differential equations. The result is

wr=(, 1‘2(/”(", (20)
whoere ’
_(Fi g
F= f w0 (21)

The boundary conditions are
u*=1al {=ow (22a)
u¥=04at (= — (22h)

Letting u,* be the value of * at =0, equation (20) can he
written as

A
u* = r J de+u,* (230

The constant ' must satisfy two requirements

T—u* (e u,*
e 0 e (24
di ‘ d¢
Jooo ¥ J—w g

Equation (23) is an integral equation for 1> since both F

and g are functionsof * By simply estimating o reasonable

COMMITTEE FOR AERONATUTICR

. . . o el : *
solution for u* as a function of ¢, a first approximation ,u™ to
the true solution can be calculated from

AT,
3
[t

=, ‘ A oy* ,

[ o.(l
The zero-order approximations oF and g can be calculated
directly from qu* by using equations (15), (17). and (21).
If this process is repeated untill a given approximation is the
same as the preceding one (to the degree of accuracy desired).
and equation (24) is simultancously satisfied, then the solu-
fion 1o the prablom i abtained  The iterntion process tiurnms
out to be rupdily convergent, requiring two or three iera-
tions to obtain the function ¥*(¢) accurate to within 1 per-
cent, and about four or five iterations to obtain #*({) accu-
rate to within a few tenths of 1 percent.

In order to change the function 2*({) back to the physical
coordinates (r, %) a simple quadrature is Decessary. By
definition of the stream function,

(39),dr+(39), r=te=(), 4+ ), ¢

UoraC iy F— U po
5 3'\/~; > dz 4+ UevuxC d§=;; dy—;,; dr

Hence, with z held constant, integration gives

UL _(: T

from which /U, as a function of y\/g; can be determined.

It is to be noted that no graphical or numerical differentia-
tions are needed at any point in the above iteration process,
only quadratures are required.

As is evident from equation (16), the assumption p*=CT™>.
that is, w= 1, makes the momentum equation (16) independ-
ent of temperature, and hence density. Consequently, with
w=1, the solution to equation (16) in (z,¥) coordinates is
independent of Mach number. For zero Mach number,

T*=1, ('=1, and
T. d
(y‘\/;’[.;_l;,)M.w:: N nr T}i

Using this relation the solution in physical () coordinates
for a lincar variation of viscosity with temperature is obtained
from the solution for zero Mach number by substituting

equation (15) into equation (25). This gives

N S .
AN (;”\ »mx).u-n_
b)Y

Yy j Lo (T —Toe (260
Al

where the integral in the second term on the right side 1s
carried out for #*(&) corresponding to Mo =0
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RESULTS

Numerical calculations of the velocity distribution have
heen made for the following eases:

1 p*=T%7 M_=0,1, 2,3 and 5
2. u*=CT*; M.=0,1,2,3,and 5

The various solutions for case 2 are obtained directly
(equation (26)) from the solution for 3, =0 without carry-
ing out the laborious iteration process that is necessary to

| I daed 1 LA TR DR BTN KR

TP s

coordinates (yy Us/rvar as independent variabie) have been
calculated for the case Ty=T7, 1 the dead-air tempera-
ture is radically different from the free-stream stagnation
temperature, the proper velocity-distribution curves can be
obtained by carrying out the integration indicated in equa-
tion (25), since the function #*(&) in () coordinates is
independent of the thermal boundary conditions of the
problem.

Curves of u*(¢) are shown in figure 2 for various Mach
numbers.  The corresponding curves in the physical plane
are shown in figure 3 for the case p*= T*7% and in figure 4
for the case p*=CT*. In the latter two figures the familiar
Blasius curve for the incompressible laminar boundary-layer
flow is shown for purposes of comparison. The constant
that is used in figure 4 is determined by matching the viscos-
ity coefficient at the temperature 7,*=T,* according to
cquation (7).

The particular curves shown in figure 4 apply for 7w =400°
R. Curves for any other temperature level 7% differ only
in the constant factor C.

COMPRESSIBLE FLUID )
CONCLUDING REMARKS

A comparison is shown in figure 5 which illustrates the
cood acreement hetween veloeity distributions ealeulated
for the two approximations, w*= 7" and u*=C7T* At
a Mach number of 2 or less, the curves for a linear variation
of viscosity with temperature virtually coincide with the
curves for a 0.76-power variation. For general use the
linear approximation is recommended sinee it gives results
which are practically as accurate as the former, yvet does not
require a laborious iteration solution to be worked out for
eneh Nach number

In general the lammar-nmixing fayer is several
thicker than the laminar boundary layer, as is illustrated in
figures 3 and 4 where, for purposes of camparison, the Blasius
profile is also shown. The rate of growth of mixing-layer
thickness with increasing Mach number is somewhat larger
than the corresponding rate of growth for a laminar boundary

LS

layer. The curves in figure 3 indicate o value of roughly
Sa 2
- =140.113,
Sarmo

for rate of growth of the mixing laver: whereas the corres-
ponding value for a laminar boundary layer (see reference
9, for example) is approximately

8§.-v =1 0.09M,2

M w0

This difference is to be expected since a larger percentage of
low-density air exists in a mixing layer than in a boundary
laver.

1.0
¥
.8
.8
T i
oo T j078
, | ot Y,
' Mr04
MD- ™ . /
M3
<) |
2 \
7/4
/ |
| i ! i
0 ] Lo |
~2.0 -0 1% 1.0 2.0 3.0
Rz
x e

FIGURE 2.~Velocity distribution in the (r, ) coordinate system.
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FIoURE 4.+ Veloeity distribution for O.76-power variation of viscostty with temperature.
FIGURE 4.—Velocity distribution for linear variation of viscosity with temperature.
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or
The foregoing statements, which indicate an increase in
mixing-layer thickness with increasing Mach number, are

LANMINAR MIXING
based on the assumption that the Revnolds number (7 7.r/p.)
In most

is held constant while the Mach number is varied.
experimental apparatus the Reynolds number changes con-
Consequently,

siderably with a variation in Mach number.
depending upon the particular experimental method em-
ployed, the observed rate of mixing in the z direction may

be either increased or decreased if the Mach number is

W

W

//
increased.

AMEs AErRONAUTICAL LABORATORY,
NaTtioNaL Apvisory COMMITTEE FOR AERONAUTICS,

7,
Morrerr Fierp, Cavtr., Jan. 5, 1949.
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Figure 5.—Comparison of velocity profile for a linear and a 0.76-power variation of viscosity
with temperature.
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4. PROPELLER SYMBOLS

L .M N

=y =g S
(rolling) (pitchimg) (yawing)

D Diameter !

Geomedtric pitch

p/D Pitch ratio

v Inflow velocity

Ve Slipstream velociiy

T Thrust, absolute coeflicient CEZ«:—,JZ——

’ putIH

bt bk ped et

Q

Torque, absolute cocflicient Q=Y.
I Q )3
o1l

4

. P
P Power, absolute cocfficient Cp=—
pntD
o YV
C. Speed-power cooflicient = /2.
) ) ¢ A
3 [ 1 ’\/ Pn?
) Lfiiciency
n Revolutions per second, rps
- -V
Y ot i e Jiv R =1
& Effective helix angle=tan (21rrn
-
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5. NURLRICAL RELATIONS

hp=76.04 kg-m/s- 530 [i.1h sec
metric horsepower==0.9563 hp
mph=0.4470 mps

mps—2.2269 mph

P Ib=0.1530 ke
2.2046 Ih

1 m=3.2808 [t

L0055 m=5.280 ft




